VRLA ENERGY MANAGEMENT SYSTEM ANALYSIS

DOE Peer Review Energy Storage Program Crystal City, VA Nov. 2001

Christopher John

GNB Industrial Power Division of Exide Technologies

Battery Energy Storage Systems: Perception

- It's Old News
- Systems Don't Meet Expectations
- VRLA Technology in Question

Battery Energy Storage Systems: Reality

- VRLA Technology Is Being Demonstrated
- 7+ Years of Operational History
- Demanding Utility and Industrial Applications
- Ongoing Improvements in VRLA Process
 & Product Design (DOE Sponsorship)
- Improved Equipment and Controls
- DOE Top 100 Award

Presentation Overview

- Objectives / Background
- Battery Operation and Life
- Operational Economic Analysis
- Future Activities

Objectives

- Demonstrate Performance and Benefits of GNB ABSOLYTE IIP VRLA Battery Cells for Utility & Industrial Applications.
 - 1995 Vernon (5-MVA)
 - 1996 MP&L (1.2-MVA)
- Identify Economic Benefits Using Battery Energy Storage.

Vernon BESS Background

- Lead Smelter:Battery Recycling
- Near Los Angeles, CA
- California AirResources Board

Vernon BESS Project

- Primary: Critical Load Backup
 - Environmental Restrictions
 - Load Shedding System
- Secondary: Energy Management
 - Demand Cost Reduction
 - Deferred Energy Costs

Vernon Battery

- First Large, High Voltage VRLA System
- Absolyte IIP Battery Cell Design
 - Valve Regulated Lead Acid (VRLA)
 - Absorbent Glass Mat (AGM)
- System Capacity
 - 5 Megawatt Peak Power
 - 3.5 Megawatt Hours
 - Operating Range 600 900 VDC

Absolyte IIP VRLA Battery

- Layout
 - 2 Parallel Strings
 - 378 Modules per String
 - 3 100A33 Cells in Parallel per Module
 - Horizontal Stacks of 8 modules, Seismic Zone 4
- Cells Built in 1995

Vernon Battery Operation

Primary Function:
 Critical Load Backup
 Carried Load through 6 Outages

Vernon BESS Outage February 27, 1999

Vernon Battery Operation

Primary Function:Critical Load Backup

Secondary Function:Energy Management

Battery Life Expectancy

BESS Operations
 Not Pure Float
 Not Pure Cycle
 Combination of Both

Projected Life Basis

Float: Ah of Overcharge

Cycle: Ah of Throughput

Float Life Calculation based on a 20-year Life

- Hours of Design Life (175,320 hrs)
 - * Normal Float Current (2.16 A)
 - = 378,691 Design Ah of Overcharge
- Actual Overcharge (136,520 Ah)
 - ÷ Design Life (378,691 Ah)
 - = 36% of Total Life Consumed
- Actual Years of Operation (6 years)
 - ÷ % of Total Life Consumed (36%)
 - = 16.6 Years of Total Projected Life

Cycle Life Calculation based on 1200 cycles at 80% Depth of Discharge

- Cycles (1200) * Depth of Disch (0.80)
 * C/6 Capacity (4500 Ah)
 - = Design Ah Throughput (4.32 MAh)
- Actual Throughput (769,823 Ah)

 - = 18% of Total Life Consumed
- Actual Years of Operation (6 years)
 - ÷ % of Total Life Consumed (18%)
 - = 33.7 Years Total Projected Life

Vernon vs. Metlakatla Power & Light

Operating Parameters	Vernon	MP&L
SOC	100%	80%
Ah Overcharge	136,000	0
Equiv. 100% DOD Cycles/Mo	2.4	5.8
Governing Failure Mode	Overcharge	Throughput

Battery Life Projections

- Ah Overcharge
 - Vernon ~16 years
 - MP&L (Partial SOC, No Overcharge)
- Ah Throughput
 - Vernon ~34 years (Overcharge Will Limit)
 - MP&L ~14 years

Battery Life Projection Verification

- Need to Verify Life Projections
- Postmortems for Data Correlation
 - Vernon 0 points, MP&L 1 point
- Need to Develop End of Life Predictor

Economic Analysis

- Energy Management
 - Demand Reduction Aspect

Vernon Smelter Electricity Costs

- Annual Expenditure\$1.2 -> \$1.4 Million
- 30% of Cost from Peak kW Demand
- Opportunity for Cost Reduction

Economic Analysis

Net Cost Avoidance =

Avoided On Peak kW Demand Cost

- + Avoided On Peak kWh Cost
 - Additional Mid Peak kW Recharge Cost
 - Additional Mid/Off Peak kWh Cost

Example Economics: Summer-High Demand Monthly Cost Reduction

kWh Avoidance \$2339

kW Avoidance \$6486

Net Cost Avoidance \$3770

kWh Cost \$2640

kW Cost \$2415

Results of Economic Analysis 3.5 Megawatt Hour System

- Primary Function = Critical System Backup Achieved
- Measured Individual Month \$4,000 - \$7,000 Cost Avoidance
- FY2000 \$31,000 Cost Avoidance
- 10 year Payback for Energy Management Capability (1 Battery String) given Current Rate Structure (Low Cost Vernon)
- One Lost Day Can Reduce Cost Avoidance

Effect of Rate Structure on Payback Period

Conclusions

- Critical Loads Protected
- Demand Reduction Provides Cost Avoidance
- Absolyte IIP VRLA Chemistry Works in Energy Management Systems
- Demonstrated in Utility and Industrial Applications
- Battery Life Meeting Expectations

Future Activities

- Continue Battery Field Data Collection
- Battery Inspections, Testing, and
 Postmortems: Additional Data Points
- R&D to Improve Performance and Life
- Optimize Software Control to Reduce Battery Recharge Costs

Future Activities

- Utilize Intelligent Monitoring System to Develop Operational Database
- Refine System Data Analysis Tools
- Energy Storage Workshop to Heighten Understanding and Visibility
- Intelligent Energy Management Controls
- New Site for Next Generation BESS

Acknowledgements

- DOE Sponsorship
- Sandia National Laboratories
 - Rudy Jungst Project Manager
- GNB Team
 - George Hunt
 - Joe Szymborski
 - Christopher John (cjohn@gnb.com)